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values of the error shown in the tables correspond to these (approximately) optimal 
values of , and y. These computations were performed on the CDC 6600 at the 
National Center for Atmospheric Research. 
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Canonical Decomposition of Hessenberg Matricest 

By Beresford Parlett 

1. Introduction. A square matrix A is said to be in (upper) Hessenberg form if 

ai, = 0 for i > j + 1. Such matrices occur frequently in connection with the eigen- 
value problem. In practical work it is an important fact that any square matrix may 
be transformed in a stable manner into a similar Hessenberg matrix, see [5]. 
Apart from possible economies in computing the eigenvalues we may ask whether a 
preliminary reduction of a full matrix to this form offers any other advantages. 

We show here that this reduction replaces an arbitrary independent set of eigen- 
vectors by one which has some useful theoretical properties. In other words if J is 
the (lower) Jordan canonical form of A, say 

(1.1) A = Y-'JY, 

then the rows of Y are the row eigenvectors of A. When A is defective we must 
interpret eigenvectors in the generalized sense (as principal vectors). For general A 
we can say nothing about Y other than det (Y) # 0. If A is a Hessenberg matrix 
then Y has the properties summarized in Theorem 1. 

We should remark here that our results are fairly straightforward deductions 
from Lemma 1 which is well known, but not in the form used here. The purpose of 
this note is just to extract the properties which are latent in that lemma: essentially 
the triangular factorization of Vandermonde matrices. 

As we show in [7] the existence of this factorization helps explain the remarkable 
convergence properties of the QR algorithm of J. G. F. Francis [1]. The result is also 
useful in discussing other problems involving Hessenberg matrices. We note that 
"the" Jordan form is unique only to within the order of the submatrices of which it 
is a direct sum. The factors in our decomposition depend on this order and here we 
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prefer to speak of a Jordan form J = J1 0 D * 0 Jr where each Ji is a simple Jordan 
submatrix and 0 indicates direct sum. 

THEOREM 1. Let J be any lower Jordan form of the upper Hessenberg matrix H. 
Then there exists a nonsingular Y such that 

(i) H = YV1JY, 
(ii) Y permits the triangular decomposition L y Uy Ly unit lower triangular, Uy 

upper triangular, 
(iii) if Ly is partitioned conformably with J as Ly = (Ltd) then Ltt commutes with 

Ji) i = ly .. , r. 
In Lemma 1 we prove that for k = 1, * , n certain k X k minors in the first k 

columns of the n X n matrix Li cannot vanish. In Lemma 4 we obtain explicit ex- 
pressions for the elements of Ly in terms of polynomials whose zeros are the eigen- 
values of H. Thus Ly depends only on the spectrum of H. The effect of the eigen- 
vectors is concentrated in Uy. 

2. Previous Results. We should point out here that there is no loss of generality 
in restricting attention to Hessenberg matrices with nonzero subdiagonal elements. 
Any Hessenberg matrix is block triangular, the diagonal blocks being of the above 
type. If each block permits an LU factorization then the L-factor of the whole 
matrix is just their direct sum. 

Definition. UHM = UHMn = {H: H Hessenberg, hi+,,i 0 0, i = 1, ,n-1 } 
is the set of unreduced n X n Hessenberg matrices. Such matrices may be reducible. 

LEMMA 2 (CLASSICAL). Let J be a lower Jordan form and F the upper Frobenius 
form of H C UHM. Then 

(i) H = R'FR, R upper triangular, 
(ii) F = V'JV, V the (confluent) Vandermonde matrix determined by J. 
The results are implicit in [3, Chapter 6] and [5, Chapter 1] and we shall give a 

few observations instead of a proof. 
SinceH is nonderogatory, F is actually the companion matrix of the characteristic 

polynomial. The coefficients are in the last column. The triangle R may be associated, 
for example, with the Danilevski method. Note that as R ranges over all nonsingular 
upper triangles, R-'FR generates the equivalence class of members of UHM similar 
to F. 

Conclusion (ii) relates the two forms. Note that if T is any matrix which com- 
mutes with J then F = (TV) 'J(TV) also relates the two forms and exhibits the 
basic freedom in choice of principal vectors. In general, TV is not a Vandermonde 
matrix. 

The relation of VJ to J is best illustrated by an example. 

f S1 ) f 1 S1 A1~~~~~~2 xi13 .4 Xi 5 

1 X1 0 1 2X1 3X12 4X13 5X14 

1 Xi O O 1 3X1 6X12 lox1 

J = X2 , VJ = I 1 X2 ;X2 X23 X 5 

1 X3) 1O 1 2 3X3 2 4X33 5X34 
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The fact that members of UHM are nonderogatory will be used heavily in what 
follows. It can be seen by noting that the nullity of H - zI cannot exceed 1. 

3. Decomposition of V. We consider H E UHM, its Jordan form 

(3.1) J=J1 = *G . Jr 

and the associated Vandermonde matrix V. Here Ji = J(Xi) is the simple Jordan 
submatrix for the eigenvalue Xi. Its order is the (algebraic) multiplicity of 'X, say 
mi. Since H is nonderogatory, different Ji correspond to distinct Xi,. A classical 
result, apparently first published in [6], is that 

(3.2) det (V) = H (X x )mmMa < o. 
a,P=1;a<p 

Now any leading principal submatrix of V is the Vandermonde matrix associ- 
ated with the corresponding leading submatrix of J. Consequently, the leading 
principal minors of V are all different from zero. These are the necessary anld suffi- 
cient conditions for the triangular decomposition, see [2] or [3]. Thus 

(3.3) V = -LU diag (Lv) = I. 

Since R is upper triangular we set Y = VR and by the uniqueness of the decompo- 
sition Ly = Lv, Uy = UvR. This establishes (ii) of Theorem 1. 

It is a useful fact that Lv depends only on the eigenvalues of H and not on the 
eigenvectors. The next lemma gives information about Lv which plays an important 
role in [7]. 

Corresponding to the decomposition (3.1) we have a natural partitioning of V by 
rows as 

/V, 

(3.4) V=( V . is mi X n, i 1, . 
VFr 

Partition L = Lv in the same way as V. We already know that the leading prin- 
cipal minors of L do not vanish (all are 1) and now we shall show that certain other 
minors of L cannot vanish either. First we want a notation for these submatrices. 

There are mi rows in Li. For each i = 1, * * , r let 0 < ui < mi and choose the 
top Ati rows of Li. This submatrix is determined by the vector . = (Al, * **, ,u). It 
has = jiz = , I rows and n = J.ml =mi m I columns. We denote by Lk, the 
submatrix obtained by taking only the first k columns, k < n. Note that L = L'mj. 

LEMMA 2. Let V be the Vandermonde matrix associated with the nonderogatory 
Jordan form J = J1 (0 .. 0 Jr. Let V = V' I = LU, m = (mi, m ,mr), mi the 
order of Ji . Then for 0 < ?i < ?ni, i = 1, ... , r the submatrices L' I are nonsingular. 

Proof. In general Vl, A = L'mn U', . Since we may write 

where U is X i I and upper triangular, we have 

(3.5) det [V'A1] = det [L'y1] det [U]. 
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Now V, is the Vandermonde matrix determined by the Xi with multiplicity 
juz, i = 1, , r. As such it is nonsingular. Since U is the leading principal 
| i | X | submatrix of U it is nonsingular and the lemma follows. 

4. The Elements of LV. It is natural to partition Lv conformably with J as 
L = (L'j), i > j, where Ltj is mi X mj . We shall exhibit a typical element l'aj .We 
denote by Vs the leading principal 8-rowed submatrix of V and by Vz,, the matrix 
obtained from Va by replacing row 5 by the corresponding elements of row y of V. 
If LV = (l,s) then by [3, Chapter 1] 

(4.1) l= det [V,a]/det [Va], y ? 5. 

We shall express l.i in terms of the polynomials pl(z) = 1, pk(z) = 

fI=- (z - Xm)"o, k = 2, * , r. Let 1. = laj. ; thus y = EZ=-lmy + a, 
a= EZ-lmv +0,a ? mi X i<mjn. 

By (3.2) 
j-1 j-1 

(4.2) det [Va] = [I (X -XM)mPmM fl (j r(pj(j)), 

since ,3 is the multiplicity of Xj in Vs . 
j-1 

r = I (X - X)mm" = det [Vs-]. 

To find det [V ,a] we consider first the case when a = 1, i > j. The last row of Vs 
is (1/(fl - 1)!) (d/dXj)'-1r(Xj) where r(X) = (1, X,X2 *X-) . It is replaced by 
r(Xi) in V7,a . Again (3.2) yields, for a = 1, 

(4.3) det [V>5a] = F(pj(j))0 -pj(Xi)(Xi _ xj) . 

By differentiating (4.3) with respect to Xi we obtain for 1 ?o a < mi 

(4.4) det [V,6a] = (P/I(a - 1) -(d/i) apj(xi)(Xi-xj) ]. 

There remains the case when i = j. The result does not seem to have appeared in 
literature (at least not in Sir Thomas Muir's history) and so we give it here as 

LEMMA3. Let ni = Z,=i^ mv and 1 < ? _ a < mi, i < r. Then 

(4.5) det [Vnj+a,nj+?] = r(pi(xi) 0pi( -)(Xi)/(a - f) 

The result follows by induction on a and uses Leibnitz' rule. The proof is left as an 
exercise. 

Substituting (4.2)-(4.5) into (4.1) gives us 
LEMMA 4. With the notation developed above the elements of Lv are given by 

la= N(a ()/(a - O)!pA(Xi); i = a > 

(4.6) = ((1X ) [pj(Xi)(Xi - Xj)o ]/(ae 1)! pj(Xj), i > j. 

COROLLARY. If H has linear elementary divisors then 

(4.7) la = ps(Xy)/ps(Xs), y > ?. 

We are now in a position to establish (iii) of Theorem 1. We observe that Ltt is 
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of order mni, depends only on Xi and, by (4.6), its (a, ,B) element is a function of 
a If we define Ni = (e2, ., emi, O), where I = (el, ,em), then 

(4.8) Li = E p N(X) v 
v=O v! p(xi) 

and is a polynomial in Ni. Since Ji is also a polynomial in Ni it must commute with 
L". 

The above results were derived for H E UHA. However, properties (ii) and 
(iii) generalize immediately to all Hessenberg matrices by the remarks at the begin- 
ning of Section 2. 
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An Elimination Method for Computing 
the Generalized Inverse* 

By Leopold B. Willner 

0. Notations. We denote by 
A an m X n complex matrix, 
A* the conjugate transpose of A, 
Ai,j = 1,... ,n the jth column of A, 
A + the generalized inverse of A [7], 
H the Hermite normal form of A, [6, pp. 34-36], 
Q-1 the nonsingular matrix satisfying 

(1) H =Q-1A 

e , i = 1, ** m the ith unit vector et = (3ij), 
r the rank of A (= rank H). 

1. Method. The Hermite normal form of A is writteni as 

(2) H 
B 

where B is r X n. 

Received July 13, 1966. 
* Research supported by the National Science Foundation Grant GP-5230. 


